
- LISP Tutorial
- LISP - Home
- LISP - Overview
- LISP - Environment
- LISP - REPL
- LISP - Program Structure
- LISP - Basic Syntax
- LISP - Data Types
- Lisp Macros
- LISP - Macros
- LISP - Backquote and Comma
- LISP - Code Generation Using Macro
- LISP - Variable Capture and Hygienic macro
- LISP - Scope and Binding
- LISP - Macro Writing Style
- LISP - Macro Characters
- LISP - Read-Time Macros
- LISP - Compiler Macros
- LISP - Uses of Macros
- Lisp Functions
- LISP - Functions
- LISP - Functions vs Macros
- LISP - Calling Function using funcall
- LISP - Calling Function using apply
- LISP - Closures
- LISP - Functions as Arguments
- LISP - Functions as Return Values
- LISP - Recursion
- LISP - Built-in Functions
- Lisp Predicates
- LISP - Predicates
- LISP - Generic Data Type Predicates
- LISP - Specific Data Type Predicates
- LISP - Equality Predicates
- LISP - Numeric Predicates
- LISP - Comparison Predicates
- LISP - Logical Predicates
- LISP - List Predicates
- LISP - Custom Predicates
- LISP - Chaining Predicates
- Lisp Arrays
- LISP - Arrays
- LISP - Adjustable Arrays
- LISP - Fill Pointers in Arrays
- LISP - Specialized Arrays
- LISP - Arrays Properties
- LISP - Iterating over Arrays
- LISP - Multidimensional Arrays
- LISP - Row-Major Order
- Lisp Strings
- LISP - Strings
- LISP - String Concatenation
- LISP - String Comparison
- LISP - String Case Conversion
- LISP - String Trimmimg
- LISP - String Searching
- LISP - Getting Substring
- LISP - String Replacement
- LISP - Sorting Strings
- LISP - Merging Strings
- LISP - Accessing Characters of String
- LISP - String length
- LISP - Escape Sequences
- Lisp Sequences
- LISP - Sequences
- LISP - Accessing Element of Sequence
- LISP - Sequence length
- LISP - Getting Subsequence
- LISP - Search Element in Sequence
- LISP - Sequence Concatenation
- LISP - Reversing a Sequence
- LISP - Mapping Sequence Element
- LISP - position of Element
- LISP - Remove an Element
- LISP - Sort Sequence
- LISP - Merge Sequences
- LISP - every function
- LISP - some function
- LISP - notany function
- LISP - notevery function
- Lisp Lists
- LISP - Lists
- LISP - Accessing Elements of Lists
- LISP - Modifications to Lists
- LISP - Using mapcar on List
- LISP - Using mapc on List
- LISP - Using reduce on List
- LISP - Removing elements from List
- LISP - Reversing a List
- LISP - Sorting a List
- LISP - Searching a List
- LISP - List vs Vectors
- LISP - Matrix Multiplication
- Lisp Vectors
- LISP - Vectors
- LISP - Creating Vectors
- LISP - Accessing Elements of Vectors
- LISP - Modifications to Vectors
- LISP - Adjustable Vectors
- LISP - Specialized Vectors
- LISP - Vector Functions
- Lisp Set
- LISP - Set
- LISP - Adding elements to the Set
- LISP - Getting SubSet from a Set
- LISP - Set Difference
- LISP - Set Exclusive OR
- LISP - Set Intersection
- LISP - Set Union
- LISP - Representing Set with HashTable
- LISP - List as Set vs HashTable as Set
- Lisp Tree
- LISP - Tree
- LISP - Recursive Traversal
- LISP - Inorder Traversal
- LISP - Preorder Traversal
- LISP - Postorder Traversal
- LISP - Depth First Traversal
- LISP - Modifying Tree
- LISP - Search Tree
- LISP - Binary Tree
- Lisp Hash Table
- LISP - Hash Table
- Adding Values to Hash Table
- Removing Values from Hash Table
- Updating Values of Hash Table
- Iterating Hash Table Entries
- Searching key in HashTable
- Checking Size of HashTable
- Using Custom Equality Check
- Lisp - Input − Output
- LISP - Input − Output
- LISP - Streams
- LISP - Reading Data from Streams
- LISP - Writing Data to Streams
- LISP - File I/O
- LISP - String I/O
- LISP - Formatting with Format
- LISP - Interactive I/O
- LISP - Error Handling
- LISP - Binary I/O
- Lisp - Structures
- LISP - Structures
- LISP - Accessors and Mutators
- LISP - Structure Options
- LISP - Structure Types
- LISP - Applications and Best Practices
- Lisp - CLOS
- LISP - CLOS
- Lisp - Objects
- LISP - Class
- LISP - Slots and Accessors
- LISP - Generic Functions
- LISP - Class Precedence
- LISP - Metaobject Protocol
- LISP - Multimethods
- LISP - Multiple Inheritance
- LISP - Method Combinations
- LISP - Method Combinations
- LISP - :before Method Combination
- LISP - :primary Method Combination
- LISP - :after Method Combination
- LISP - :around Method Combination
- LISP - + Method Combination
- LISP - and Method Combination
- LISP - append Method Combination
- LISP Useful Resources
- Lisp - Quick Guide
- Lisp - Useful Resources
- Lisp - Discussion
Lisp - Equality Predicates
Lisp provides various equality predicates which can be used as per the required scenario. In this chapter, we'll uncover each of them with examples.
The following table shows the list of equality predicates −
Sr.No. | Predicate & Description |
---|---|
1 |
eq It takes two arguments and returns t if they are same identical objects, sharing the same memory location or nil otherwise. |
2 |
eql It takes two arguments and returns t if the arguments are eq, or if they are numbers of the same type with the same value, or if they are character objects that represent the same character, or nil otherwise. |
3 |
equal It takes two arguments and returns t if they are structurally equal or nil otherwise. |
4 |
equalp It takes two arguments and returns t if they are structurally equal or nil otherwise. |
Example - eq
eq predicate tests for identity. Two objects are same if both are equal in memory.
symbols with same name will be equal.
list if they've same structure and all elements are equal but created seperately are not equal.
In case of strings, if two same strings are pointing to same memory, then equal
eq predicate tests for numbers may vary as it is implementation specific.
Following code shows various scenarios.
main.lisp
(write(eq 'abc 'abc)) ; T, symbols are the same objects (terpri) (write(eq (cons 'a 'b) (cons 'a 'b))) ; nil, lists with the same elements are different objects (terpri) (setq x '(1 2 3)) ; set x as (1 2 3) (setq y x) ; set y as (1 2 3) (write(eq x y)) ; T, x and y are pointing to the same list
Output
When you execute the code, it returns the following result −
T NIL T
Example - eql
eql is similar to eq predicate but with more restrictions. It is same as eq for symbols.
for numbers, eql returns t if numbers have same value and same type. integer and float with same value comparison will be nil.
For character, eql is a case-sensitive comparison predicate.
For objects, eql is same as eq.
Following code shows various scenarios.
main.lisp
(write(eql 'abc 'abc)) ; T (terpri) (write(eql 10 10)) ; T (terpri) (write(eql 10 10.0)) ; NIL, type is different (terpri) (write(eql #\A #\A)) ; T (terpri) (write(eql #\A #\a)) ; NIL, case sensitive
Output
When you execute the code, it returns the following result −
T T NIL T NIL
Example - equal
equal predicate tests for structural equality.
symbols, numbers and characters are checked if they are same object in memory.
list elments are compared recursively. Two lists are equal, if they've same structure and all elements are equal.
In case of strings, all characters are compared for equality.
equal predicate tests for other data structure may vary.
Following code shows various scenarios.
main.lisp
(write(equal 'abc 'abc)) ; T (terpri) (write(equal 10 10)) ; T (terpri) (write(equal '(a b c) '(a b c))) ; T, lists with the same structure and elements (terpri) (write(equal "hello" "hello")) ; T, strings with the same characters
Output
When you execute the code, it returns the following result −
T T T T
Example - equalp
equalp predicate tests for structural equality similar to equal with some liberty.
numbers are same if their values are same even if their types are different.
characters and strings are compared using case-insensitive way
Following code shows various scenarios.
main.lisp
(write(equalp 'abc 'abc)) ; T (terpri) (write(equalp 10 10.0)) ; T (terpri) (write(equalp "hello" "Hello")) ; T, strings with different case
Output
When you execute the code, it returns the following result −
T T T