
- LISP Tutorial
- LISP - Home
- LISP - Overview
- LISP - Environment
- LISP - REPL
- LISP - Program Structure
- LISP - Basic Syntax
- LISP - Data Types
- Lisp Macros
- LISP - Macros
- LISP - Backquote and Comma
- LISP - Code Generation Using Macro
- LISP - Variable Capture and Hygienic macro
- LISP - Scope and Binding
- LISP - Macro Writing Style
- LISP - Macro Characters
- LISP - Read-Time Macros
- LISP - Compiler Macros
- LISP - Uses of Macros
- Lisp Functions
- LISP - Functions
- LISP - Functions vs Macros
- LISP - Calling Function using funcall
- LISP - Calling Function using apply
- LISP - Closures
- LISP - Functions as Arguments
- LISP - Functions as Return Values
- LISP - Recursion
- LISP - Built-in Functions
- Lisp Predicates
- LISP - Predicates
- LISP - Generic Data Type Predicates
- LISP - Specific Data Type Predicates
- LISP - Equality Predicates
- LISP - Numeric Predicates
- LISP - Comparison Predicates
- LISP - Logical Predicates
- LISP - List Predicates
- LISP - Custom Predicates
- LISP - Chaining Predicates
- Lisp Arrays
- LISP - Arrays
- LISP - Adjustable Arrays
- LISP - Fill Pointers in Arrays
- LISP - Specialized Arrays
- LISP - Arrays Properties
- LISP - Iterating over Arrays
- LISP - Multidimensional Arrays
- LISP - Row-Major Order
- Lisp Strings
- LISP - Strings
- LISP - String Concatenation
- LISP - String Comparison
- LISP - String Case Conversion
- LISP - String Trimmimg
- LISP - String Searching
- LISP - Getting Substring
- LISP - String Replacement
- LISP - Sorting Strings
- LISP - Merging Strings
- LISP - Accessing Characters of String
- LISP - String length
- LISP - Escape Sequences
- Lisp Sequences
- LISP - Sequences
- LISP - Accessing Element of Sequence
- LISP - Sequence length
- LISP - Getting Subsequence
- LISP - Search Element in Sequence
- LISP - Sequence Concatenation
- LISP - Reversing a Sequence
- LISP - Mapping Sequence Element
- LISP - position of Element
- LISP - Remove an Element
- LISP - Sort Sequence
- LISP - Merge Sequences
- LISP - every function
- LISP - some function
- LISP - notany function
- LISP - notevery function
- Lisp Lists
- LISP - Lists
- LISP - Accessing Elements of Lists
- LISP - Modifications to Lists
- LISP - Using mapcar on List
- LISP - Using mapc on List
- LISP - Using reduce on List
- LISP - Removing elements from List
- LISP - Reversing a List
- LISP - Sorting a List
- LISP - Searching a List
- LISP - List vs Vectors
- LISP - Matrix Multiplication
- Lisp Vectors
- LISP - Vectors
- LISP - Creating Vectors
- LISP - Accessing Elements of Vectors
- LISP - Modifications to Vectors
- LISP - Adjustable Vectors
- LISP - Specialized Vectors
- LISP - Vector Functions
- Lisp Set
- LISP - Set
- LISP - Adding elements to the Set
- LISP - Getting SubSet from a Set
- LISP - Set Difference
- LISP - Set Exclusive OR
- LISP - Set Intersection
- LISP - Set Union
- LISP - Representing Set with HashTable
- LISP - List as Set vs HashTable as Set
- Lisp Tree
- LISP - Tree
- LISP - Recursive Traversal
- LISP - Inorder Traversal
- LISP - Preorder Traversal
- LISP - Postorder Traversal
- LISP - Depth First Traversal
- LISP - Modifying Tree
- LISP - Search Tree
- LISP - Binary Tree
- Lisp Hash Table
- LISP - Hash Table
- Adding Values to Hash Table
- Removing Values from Hash Table
- Updating Values of Hash Table
- Iterating Hash Table Entries
- Searching key in HashTable
- Checking Size of HashTable
- Using Custom Equality Check
- Lisp - Input − Output
- LISP - Input − Output
- LISP - Streams
- LISP - Reading Data from Streams
- LISP - Writing Data to Streams
- LISP - File I/O
- LISP - String I/O
- LISP - Formatting with Format
- LISP - Interactive I/O
- LISP - Error Handling
- LISP - Binary I/O
- Lisp - Structures
- LISP - Structures
- LISP - Accessors and Mutators
- LISP - Structure Options
- LISP - Structure Types
- LISP - Applications and Best Practices
- Lisp - CLOS
- LISP - CLOS
- Lisp - Objects
- LISP - Class
- LISP - Slots and Accessors
- LISP - Generic Functions
- LISP - Class Precedence
- LISP - Metaobject Protocol
- LISP - Multimethods
- LISP - Multiple Inheritance
- LISP - Method Combinations
- LISP - Method Combinations
- LISP - :before Method Combination
- LISP - :primary Method Combination
- LISP - :after Method Combination
- LISP - :around Method Combination
- LISP - + Method Combination
- LISP - and Method Combination
- LISP - append Method Combination
- LISP Useful Resources
- Lisp - Quick Guide
- Lisp - Useful Resources
- Lisp - Discussion
Lisp - Scope and Bindings in Macro
Macros as compared to functions operate on code itself instead of evaluation, so understanding scope and bindings of variables within a macro is very important. In this chapter, we're discussing how variables and symbols are handled in a macro.
Macro as Code Generator/Transformer
A macro is a function which can transform code. A macro takes LISP form as input and generates a new LISP form as output. A macro is evaluated at compile time. The resulted transformed code is evaluated by LISP compiler.
Hygienic Macro
While working with Macro, we should take case of unintentional variable capturing. A variable capture occurs when a macro introduces a variable of same name as passed as an argument to macro. It may lead to unintentional behavior.
Common Lisp, provides ways to handle variable capturing to create a Hygienic Macro. Consider the following case:
Variable Capturing
; define a macro to swap two numbers (defmacro swap (x y) `(let ((temp ,x)) ; variable capturing occurs when x is passed as temp (setf ,x ,y) (setf ,y temp))) ; define two variables temp and my-var (let ((temp 1) (my-var 2)) (swap temp my-var) ; swap macro unintentionally uses local temp over passed argument temp (print temp) ; temp is not modified (print my-var)) ; my-var is not modified
Output
When you execute the code, it returns the following result −
1 2
Now in order to fix the variable capturing, we can use gensym function to create a generic symbol in order to create a unique temporary variable.
Hygienic Macro
; define a macro to swap two numbers (defmacro swap (x y) (let ((temp (gensym))) ; create a unique variable `(let ((,temp ,x)) ; insert the unique variable and value of x (setf ,x ,y) (setf ,y ,temp)))) (let ((temp 1) (my-var 2)) (swap temp my-var) ; swap macro correctly uses passed temp argument (print temp) (print my-var))
Output
When you execute the code, it returns the following result −
2 1
Here due to variable capturing, variable swap is not working.
Scope in Macro Expansion
Scope of a variable in a macro is determined by the lexical scope of the code produced by macro. When a macro is expanded, the resultant code is inserted into the context where macro is called.
Variables introduced by a macro are bound to same scoping rules as for any other variable in same context.
Use of symbol-macrolet
symbol-macrolet is used to create local symbolic macros and works at level of variable access. See the example below:
(let ((x 10)) (symbol-macrolet ((y x)) ; y is now alias of x (print y) ; prints 10 (setf y 20) ; replace value of y as 20 (print x))) ; print updated value of x as 20
Output
When you execute the code, it returns the following result −
10 20
Use of macrolet
macrolet is used to create local function macros and macro is available only within function and has limited lexical scope of that of function. See the example below:
(defun my-function (x) (macrolet ((square (n) `(* ,n ,n))) ; define a macro to get square of a number (square x))) ; call the macro (print(my-function 10))
Output
When you execute the code, it returns the following result −
100