
- LISP Tutorial
- LISP - Home
- LISP - Overview
- LISP - Environment
- LISP - REPL
- LISP - Program Structure
- LISP - Basic Syntax
- LISP - Data Types
- Lisp Macros
- LISP - Macros
- LISP - Backquote and Comma
- LISP - Code Generation Using Macro
- LISP - Variable Capture and Hygienic macro
- LISP - Scope and Binding
- LISP - Macro Writing Style
- LISP - Macro Characters
- LISP - Read-Time Macros
- LISP - Compiler Macros
- LISP - Uses of Macros
- Lisp Functions
- LISP - Functions
- LISP - Functions vs Macros
- LISP - Calling Function using funcall
- LISP - Calling Function using apply
- LISP - Closures
- LISP - Functions as Arguments
- LISP - Functions as Return Values
- LISP - Recursion
- LISP - Built-in Functions
- Lisp Predicates
- LISP - Predicates
- LISP - Generic Data Type Predicates
- LISP - Specific Data Type Predicates
- LISP - Equality Predicates
- LISP - Numeric Predicates
- LISP - Comparison Predicates
- LISP - Logical Predicates
- LISP - List Predicates
- LISP - Custom Predicates
- LISP - Chaining Predicates
- Lisp Arrays
- LISP - Arrays
- LISP - Adjustable Arrays
- LISP - Fill Pointers in Arrays
- LISP - Specialized Arrays
- LISP - Arrays Properties
- LISP - Iterating over Arrays
- LISP - Multidimensional Arrays
- LISP - Row-Major Order
- Lisp Strings
- LISP - Strings
- LISP - String Concatenation
- LISP - String Comparison
- LISP - String Case Conversion
- LISP - String Trimmimg
- LISP - String Searching
- LISP - Getting Substring
- LISP - String Replacement
- LISP - Sorting Strings
- LISP - Merging Strings
- LISP - Accessing Characters of String
- LISP - String length
- LISP - Escape Sequences
- Lisp Sequences
- LISP - Sequences
- LISP - Accessing Element of Sequence
- LISP - Sequence length
- LISP - Getting Subsequence
- LISP - Search Element in Sequence
- LISP - Sequence Concatenation
- LISP - Reversing a Sequence
- LISP - Mapping Sequence Element
- LISP - position of Element
- LISP - Remove an Element
- LISP - Sort Sequence
- LISP - Merge Sequences
- LISP - every function
- LISP - some function
- LISP - notany function
- LISP - notevery function
- Lisp Lists
- LISP - Lists
- LISP - Accessing Elements of Lists
- LISP - Modifications to Lists
- LISP - Using mapcar on List
- LISP - Using mapc on List
- LISP - Using reduce on List
- LISP - Removing elements from List
- LISP - Reversing a List
- LISP - Sorting a List
- LISP - Searching a List
- LISP - List vs Vectors
- LISP - Matrix Multiplication
- Lisp Vectors
- LISP - Vectors
- LISP - Creating Vectors
- LISP - Accessing Elements of Vectors
- LISP - Modifications to Vectors
- LISP - Adjustable Vectors
- LISP - Specialized Vectors
- LISP - Vector Functions
- Lisp Set
- LISP - Set
- LISP - Adding elements to the Set
- LISP - Getting SubSet from a Set
- LISP - Set Difference
- LISP - Set Exclusive OR
- LISP - Set Intersection
- LISP - Set Union
- LISP - Representing Set with HashTable
- LISP - List as Set vs HashTable as Set
- Lisp Tree
- LISP - Tree
- LISP - Recursive Traversal
- LISP - Inorder Traversal
- LISP - Preorder Traversal
- LISP - Postorder Traversal
- LISP - Depth First Traversal
- LISP - Modifying Tree
- LISP - Search Tree
- LISP - Binary Tree
- Lisp Hash Table
- LISP - Hash Table
- Adding Values to Hash Table
- Removing Values from Hash Table
- Updating Values of Hash Table
- Iterating Hash Table Entries
- Searching key in HashTable
- Checking Size of HashTable
- Using Custom Equality Check
- Lisp - Input − Output
- LISP - Input − Output
- LISP - Streams
- LISP - Reading Data from Streams
- LISP - Writing Data to Streams
- LISP - File I/O
- LISP - String I/O
- LISP - Formatting with Format
- LISP - Interactive I/O
- LISP - Error Handling
- LISP - Binary I/O
- Lisp - Structures
- LISP - Structures
- LISP - Accessors and Mutators
- LISP - Structure Options
- LISP - Structure Types
- LISP - Applications and Best Practices
- Lisp - CLOS
- LISP - CLOS
- Lisp - Objects
- LISP - Class
- LISP - Slots and Accessors
- LISP - Generic Functions
- LISP - Class Precedence
- LISP - Metaobject Protocol
- LISP - Multimethods
- LISP - Multiple Inheritance
- LISP - Method Combinations
- LISP - Method Combinations
- LISP - :before Method Combination
- LISP - :primary Method Combination
- LISP - :after Method Combination
- LISP - :around Method Combination
- LISP - + Method Combination
- LISP - and Method Combination
- LISP - append Method Combination
- LISP Useful Resources
- Lisp - Quick Guide
- Lisp - Useful Resources
- Lisp - Discussion
Lisp - Set Intersection
Set Intersection represents the common elements between two sets. Lisp provides intersection, a built-in function to get the intersection of two sets.
Syntax - intersection function
(intersection list1 list2 &key :test :test-not :key)
Arguments
-
list1− first set
-
list2− second set
-
:test− Function of two arguments to compare elements of Set. By default, eql is the function used.
-
:test-not− Function of two arguments returning true if elements are not equal.
-
:key− Function of one argument to be applied on each item of the set to be used for intersection
Example - Intersection of sets of numbers
Following example shows the Intersection of set of numbers.
main.lisp
; define a set of values (defvar my-set-1 '(1 2 3 4 5 )) ; print the result (print my-set-1) (terpri) ; define another set of values (defvar my-set-2 '(3 4 5 6 7)) ; print the result (print my-set-2) (terpri) ; get intersection (setf result-set (intersection my-set-1 my-set-2)) ; print the result (print result-set)
Output
When you execute the code, it returns the following result −
(1 2 3 4 5) (3 4 5 6 7) (3 4 5)
Example - Intersection of sets of characters
Following example shows the intersection of set of characters.
main.lisp
; define a set of values (defvar my-set-1 '(a b c d e)) ; print the result (print my-set-1) (terpri) ; define another set of values (defvar my-set-2 '(b c d e f)) ; print the result (print my-set-2) (terpri) ; get set intersection (setf result-set (intersection my-set-1 my-set-2)) ; print the result (print result-set)
Output
When you execute the code, it returns the following result −
(A B C D E) (B C D E F) (B C D E)
Example - Intersection of sets of list using :test
Following example shows the Intersection of set of list.
main.lisp
; define a set of lists (defvar my-set-1 '((1 2)(3 4))) ; print the result (print my-set-1) (terpri) ; define another set of list (defvar my-set-2 '((3 4)(5 6))) ; print the result (print my-set-2) (terpri) ; get set intersection (setf result-set (intersection my-set-1 my-set-2 :test #'equal)) ; print the result (print result-set)
Output
When you execute the code, it returns the following result −
((1 2) (3 4)) ((3 4) (5 6)) ((3 4))
Example - Intersection of sets of strings
Following example shows the intersection of set of strings.
main.lisp
; define a set of lists (defvar my-set-1 '("apple" "banana" "cherry")) ; print the result (print my-set-1) (terpri) ; define another set of list (defvar my-set-2 '("banana" "date")) ; print the result (print my-set-2) (terpri) ; get set intersection (setf result-set (intersection my-set-1 my-set-2 :test #'string=)) ; print the result (print result-set)
Output
When you execute the code, it returns the following result −
("apple" "banana" "cherry") ("banana" "date") ("banana")
Key Considerations
intersection is a non-destructive function. Original set is not modified and a new set is returned.
:test argument can be used to specify custom equality function.
:test-not argument is inverse of :test.
:key keyword allows to compare part of an element.
intersection function is generally the most efficient and idiomatic way to perform intersection of Sets.
nintersection, destructive version of intersection
Lisp provides another version of intersection function as nintersection function. It may destroy the cells of first set.
Syntax - nintersection function
(nintersection list1 list2 &key :test :test-not :key)
Arguments
-
list1− first set
-
list2− second set
-
:test− Function of two arguments to compare elements of Set. By default, eql is the function used.
-
:test-not− Function of two arguments returning true if elements are not equal.
-
:key− Function of one argument to be applied on each item of the set to be used for intersection
Example - Intersection of sets of numbers
Following example shows the Intersection of set of numbers.
main.lisp
; define a set of values (defvar my-set-1 '(1 2 3 4 5 )) ; print the result (print my-set-1) (terpri) ; define another set of values (defvar my-set-2 '(3 4 5 6 7)) ; print the result (print my-set-2) (terpri) ; get intersection (setf result-set (nintersection my-set-1 my-set-2)) ; print the result (print result-set)
Output
When you execute the code, it returns the following result −
(1 2 3 4 5) (3 4 5 6 7) (3 4 5)